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Part 2. Finite-amplitude development 
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In the present paper we formulate a theory to predict the time development of sand 
ripples characterized by small but finite amplitude under the action of surface 
gravity waves. The theory is based on a weakly nonlinear stability analysis of a flat 
sandy bottom subject to viscous oscillatory flow. The parameters of the problem 
(namely the Reynolds number of the flow and the Reynolds and Froude numbers of 
sediments) are assumed to fall within a neighbourhood of the critical conditions 
determined in Blondeaux (1990). The analysis can predict the actual ripple height, 
wavelength and profile when flow separation is absent, i.e. for the case of rolling- 
grain ripples. Assuming Sleath’s (1984) criterion for separation, the values of the 
relevant parameters at  which transition from rolling-grain ripples to vortex ripples 
occurs are predicted. A comparison between theoretical findings and experimental 
data supports the validity of the present theory. 

1. Introduction 
In the companion paper (Blondeaux 1990, hereinafter referred to as I), the senior 

author has analysed ripple formation underneath a gravity wave by developing a 
linear stability analysis which allowed the determination of the threshold conditions 
for the growth of infinitesimal perturbations of a flat sandy bottom subject to a 
viscous oscillatory flow. 

Results of I show that for fixed values of the Reynolds number R, of the bottom 
boundary layer and the particle Reynolds number R,, a critical value of the particle 
Froude number Fd exists (Fdc) such that (i) for F, < Fdc bottom perturbations decay 
for each real value of the perturbation wavenumber a ;  (ii) for F, > Fdc bottom 
perturbations characterized by wavenumbers falling within a restricted range 
experience a net amplification during a cycle. (In this paper we adopt the notation 
and definitions of I.) The above analysis also allows the prediction of ripple 
wavelength at  the critical conditions. 

However, being based on a linear stability analysis, the above work is unable to 
follow the temporal development of finite-amplitude perturbations and predict 
whether they eventually reach a final equilibrium amplitude and its value. The latter 
goal is of some interest. Indeed it is well known (Sleath 1984) that for values of the 
ratio k between ripple height and ripple wavelength larger than about 0.1, flow 
separates behind the crests and vortex ripples develop. An analysis which could 
predict the actual ripple height and wavelength as a function of the physical 
parameters of the problem could then predict the value of k and consequently the 
actual bed configuration (rolling-grain ripples or vortex ripples). 

The mechanics of ripple initiation is explained in 1 : a slight perturbation of the sea 
bottom under an oscillatory motion produces steady streaming which tends to carry 
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sediment from the trough towards the crest of the perturbation, thus causing its 
growth. The tendency of sediment to pile up near the crests is opposed by the gravity 
force acting down the slope. The growth of bottom perturbations is thus controlled 
by a balance between the above two effects. If drag prevails over gravity the 
perturbation starts to grow. In this paper we try to  explain the mechanism by which 
the perturbations reduce their growth and finally reach an equilibrium configuration, 
It will be shown how the phenomenon of ripple development is controlled by 
nonlinear effects which will be seen to inhibit the indefinite growth predicted by 
linear theory. 

I n  the present paper we develop a weakly nonlinear stability analysis of a flat 
sandy bottom subject to a viscous oscillatory flow. Since it has been experimentally 
observed that the average bottom development takes place on a timescale much 
larger than the timescale characteristic of fluid oscillations, two timescales have been 
introduced thus decoupling fluid from bottom development. 

The flow field has then been determined using the solution for the viscous non- 
linear oscillatory flow over a wavy wall due to Vittori (1989). Then the equation 
describing the nonlinear evolution of the fastest growing bottom perturbation is 
derived for values of the relevant physical parameters falling within a neighbourhood 
of the critical conditions for ripple formation determined in I. This amplitude 
equation is of Landau-Stuart type (Stuart 1971) and allows for equilibrium 
amplitude solutions asymptotically reached for large times. It is worth pointing out 
that the equilibrium amplitude of ripples is thus related to the quantity (Fd-Fdc). 
Moreover in the present analysis i t  has been assumed, according to Sleath (1984), 
that vortex ripples appear as soon as the value of k exceeds the threshold value 0.1. 
Using this assumption and analysing the amplitude equation, a critical value of Fd 
for vortex-ripple formation can be determined together with the geometrical 
configuration of rolling-grain ripples present when the flow does not separate. 

I n  the next section we formulate the problem and describe the method of solution. 
In  the third section we describe some results. The last section is devoted to some 
conclusions. 

2. Theory 
Under the assumptions formulated in $2 of I we analyse the time development of 

a periodic bottom perturbation of small but finite amplitude when the relevant 
physical parameters of the problem fall within a neighbourhood of the critical 
conditions (determined in I) for which ripples are expected to  form. 

For fixed values of R, and R,, we consider particle Froude numbers lid and 
perturbation wavenumbers a such that 

Fd = Fd, + €, a = a, -!- €a1, (1% a) 
where E is a small parameter denoting the difference between the actual sediment 
Froude number Fd and its critical value Fdc, a, is the critical wavenumber for fixed 
values of R, and R,, while a, is an arbitrary parameter of order one. 

Relationships (1 a, b )  imply that disturbances are followed in the weakly nonlinear 
regime, allowing their wavenumber a to be ‘slightly’ perturbed with respect to the 
critical value a,. 

As stated in I the problem of determining the time development of a bottom 
perturbation is posed by the vorticity equation and the sediment continuity 
equation, along with a ‘constitutive ’ relationship between sediment flow rate and 
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flow characteristics. Boundary conditions are also required which force the flow field 
in the bottom layer to match the outer irrotational motion far from the bottom and 
satisfy no-slip at the bottom. 

From the results described in I it can be easily verified that in the neighbourhood 
of the critical condition defined by ( 1  a, b )  the amplification factor which controls the 
average growth of an infinitesimal bottom perturbation is of order 8. For this reason 
the process is described in terms of a fast timescale t as well as of a slow timescale T 
defined by (2a). Thus, following the lead of Stuart (1971) we employ a multiple scale 
technique and define a 'slow' timescale T associated with the average growth of 
perturbations such that a a  a 

7 = E Q t ,  - + - + € Q - ,  Pa,  b)  at at a7 

where, as shown in I 

Thus the average growth of perturbations takes place on a timescale that is much 
larger than that associated with fluid oscillations. Indeed typical values of Q for sand 
in a laminar boundary layer at the bottom of gravity waves are smaller than one and 
E is much smaller than one since the parameters of the problem fall within a 
neighbourhood of the critical conditions. 

Using (2) and the non-dimensional variables defined in I, the governing differential 
problem reads 

aSl. aSl. 
aY ax _ -  - 0, - = 0  for y =  7, (7) 

The relationship (5 )  relating sediment flow rate to flow characteristics has been 
proposed in I and will not be discussed further in the present contribution. 

In order to derive the order of magnitude of the amplitude of the perturbation we 
follow the usual argument of hydrodynamic stability : nonlinearity gives rise to 
interactions of the fundamental with itself and with the basic flow which lead to the 
generation of higher harmonics. Following the above cascade process one finds that 
the fundamental is reproduced at third order and secular terms are generated. In 
order to prevent their occurrence the 'slow ' time dependence of the amplitude d of 
the fundamental must also be forced to produce a contribution at third order. In 
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other words s ( d d / d 7 )  must balance d3, which occurs provided O ( d ) -  = O(E:). We 
then expand the solution in the form 

~ ( z ,  t ,  7) = ci[A(7) C,(t) eiaZ + c.c.] + c[A2(7) C,,(t) etiaZ + C.C.] 

+ &A2(7) A(7) C,,(t) eiaz + c.c.] + O( eg e3iaZ), (8) 

+(x, y, t, 7) = +o(y, t )  + E ; [ A ( ~ )  c,(t) ~ ~ ( y ,  t )  eiaz + c.c.1 

+ 4 4 7 ) & 7 )  C,(t) a t )  @zo(Y, t )  

+A2(7) (Ci(t) @&)(y, t )  + C,,(t) @ii)(y, t ) )  eZiaz + c.c.] 

+ E ~ [ A ~ ( ~ ) X ( T )  (c;(t) C,(t)  @g)(y, t )  + ~ , , ( t )  @g)(yy, t ) )  eiaZ + c.c.1 

+ 0 ( ~ ~ ~ 3 ~ ~ z ) ,  (9) 

where A ( T )  represents the amplitude of the fundamental (averaged on a cycle) which 
evolves on the slow timescale 7.  Notice that an overbar (or c.c.) denotes, the complex 
conjugate of a complex number. 

In  the expansion (9) for the stream function + various contributions appear: 
(i) the stream function of the basic Stokes flow ; 
(ii) a contribution of order d (dAC, @, eiax) which is forced by the fundamental 

bottom perturbation (cblC, eiaZ) ; 
(iii) a contribution of order E which is the sum of three terms: EAAC, C, Gz0, d 2 G i  

@it) eZim and eA2C2, @!# eZim. The first two terms are generated by the nonlinear 
interaction of the flow-field component a t  the previous order. Since the latter is 
periodic along the x-direction with wavenumber a, one term is independent of x and 
the other is periodic with wavenumber 2a. The steady streaming associated with this 
fluid motion would tend to  carry sediment along the bed profile thus causing the 
appearance of a bottom waviness with a wavelength equal to  half of the fundamental 
( d 2 C z 2  eZiaz). This new perturbation of the bottom profile produces a further 
component of the stream function, namely eAaC,, @!$ eZiaz ; 

(iv) two contributions of order e: proportional to eiaz and to eliax respectively. 
They are generated either by nonlinear effects or by the presence of a bottom 
perturbation of order ci. In  (8) and (9) only the term proportional to eiuz is explicitly 
shown since the other term is not relevant to the present analysis. 

Derivation of the equations for the unknown functions appearing in (8) and (9) is 
tedious but straightforward. The equations are obtained by substituting (8), (9) into 
(3)-(7) and equating like powers of E .  Since this is a well-established procedure and 
since the intermediate and resultant equations are lengthy, details are omitted. 
Readers not familiar with this procedure are referred to Vittori (1990). 

2.1. O(e0) 

At 0 ( e o )  we obtain the Stokes problem. The flow field is described by the stream 
function $, (y , t )  given by (22), (24) of I and sediment moves to and fro. 

2.2. O(d) 
At order ci a problem identical to  that posed by (15)-( 18) of I is obtained. I n  order 
to determine the flow field a different method of solution with respect to that used 
in I is employed here which has the advantage of also being suitable for obtaining the 
solution of the differential systems obtained a t  higher orders. Details of the method 
can be found in Vittori (1989). However, it is worth summarizing here the main 
features of the procedure. 
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As in I the new coordinate system (a, jj), which oscillates with the fluid far from the 
bottom, is introduced and the modified stream function 8 is defined (see (19) and (21) 
of I). The latter is developed in power series in .&: 

& = Go + &A(T) ~ , ( t )  d,(g, t )  cia'+ c.c.]+ ~ ( e ) .  (10) 

Comparing (10) with (9) i t  follows that 

GI = @,P( t ) .  (11) 

The functions GI and P(t ) ,  being periodic in time, are expanded in Fourier series as 
in I :  

+m +m 

P(t )  = z pmeimt, dl(jj,t) = z G,(#)eimt. (1% b)  
m--w m=-m 

Substitution of (10)-(12) into the problem at  order d, along with (19) and (21) of I, 
leads to the following system of coupled ordinary differential equations for G, : 

2 
-imN2G, + ia, 
R, 

with the following boundary conditions 

The operator N2 is defined as follows: 

N = - (ti2 --a2. .) 
In  (13) and (14a) the function F, coincides with that given by (24) of I. Neglecting 
harmonics higher than the Mth in the Fourier series (12), the functions G, are 
determined numerically using a RungeKutta  method of fourth order and a shooting 
procedure from infinity to ensure numerical accuracy. 

More precisely: first equation (13) is solved in a closed form for large values of jj 
where F, tends to vanish and the solution behaves as follows: 

(16) GZ = a, e-OLB + b, exp [ - (a, + 2irng)il. 

Notice that in (16) exponentially growing components have been dropped because 
of (14 b) .  Secondly, starting from large values of fj (y”,), where G ,  and its derivatives 
are known from (16), a set of 2M+ 1 linearly independent numerical solutions G$) are 
obtained assuming linearly independent values for a,  and b, (the integration 
procedure makes use of a standard Runge-Kutta method of fourth order). Finally, 
the solution is then determined as a linear combination of G$ which satisfies the 
boundary conditions (14a) at the wall. 

and of the number M of harmonics retained in 
(12 a, b )  have been chosen according to the following criteria. The value of j j m  must 
be large enough for the convective term in (13) to be negligible with respect to the 

The values of the starting point 
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remaining terms of the vorticity equation. Since Fo decreases exponentially with the 
distance from the wall, values of 9 ,  larger than 7 are sufficient to ensure a relative 
error of less than for aR, of order one. The value of M has been chosen on the 
basis of numerical experiments in such a way that the contribution of the harmonics 
M +  1 and -M- 1 to the solution are negligible. The value ofM depends on 01 and Rb. 
I n  the range of the parameters so far investigated a maximum value M = 25 has been 
employed. 

Once the stream function at order 6; is known, the sediment continuity equation 
can be solved to obtain the function C,(t). Since, as stated I, the values of Q are 
smaller than one, C,( t )  can be expanded in power series of Q in the form 

(17) C,(t) = 1 + QC!”(t) + O(Q’). 

After substitution of (8), (9) and (17) into the sediment continuity equation and the 
use of the sediment flow rate formula, a t  order d Q  one finds 

= -ia,e(t), 
dC$’) ( t )  

dt 

The solution of (18) is straightforward and leads to the following form for G(t) : 

Cr) ( t )  = - ia, lo e( t )  dt. 

Since e(t) is a periodic function of time (indeed all functions appearing in its definition 
are periodic) the boundedness of Cp)(t) is ensured by the fact that the integrand 
which appears in (20) has a vanishing time average over a cycle. The latter conclusion 
is based on the observation that the physical parameters of the problem fall within 
a neighbourhood of the critical conditions (compare (19) with (33) of I): From a 
physical point of view this means that the destabilizing effects due to fluid motion 
which tends to carry sediment from the troughs to the crests (first two terms 
appearing in (19)) are exactly balanced by the effect of the component along the bed 
profile of the weight of the sediment (third term appearing in (19)). 

2.3. O(B)  

At order e, the interaction of the leading-order perturbation with itself in the 
vorticity equation produces two terms in the stream function: a distortion of the 
basic flow (independent of the 2-coordinate) and a periodic contribution with 
wavelength equal to half that of the fundamental. These two terms are respectively 
AAC, Cl Qzo and A’C: @!$ e2iax. As previously explained, the steady streaming at 
this order of approximation tends to carry sediment along the bed profile thus 
causing the appearance of a bottom waviness with wavelength equal to half that of 
the fundamental (A2C,, e2iax). This new perturbation of the bottom profile produces 
a further component of the stream function (A2C,, @!$) eziux) which is proportional to 
the amplitude A2C,, of the second harmonic of the bottom. Substitution of (9) in (3), 
(6), (7)  gives rise a t  order E to the problems for @’,, @!$ and Qg) which are reported 
in Appendix A. The procedure followed to obtain the flow field a t  this order of 
approximation is similar to that used in 52.2 and will not be described here. Details 
can be found in Vittori (1989). 
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Once the flow is known, the sediment continuity equation is considered. As before 
we develop C,, as 

Substituting (8), (9) and (21) into (4) and using ( 5 ) ,  at order s& we find 

where the functionsf(t) and g(t) are given in Appendix B. 
The time derivative of Ci;) is thus given by the sum of two contributions. The first 

contribution (-2iacf(t)) is related to the action of the flow field arising from the 
nonlinearity of the vorticity equation. The second contribution (- 2ia, Ci:) g(t)) is 
simply related to the flow induced by the second harmonic of the bottom profile. It 
is easy to see that bothf(t) and g(t) are periodic functions of time. So if we require 
that C!j\l remains bounded, the time average over a period of the right-hand side of 
(22) must vanish. This condition determines the value of the constant Cii), i.e. the 
amplitude of the bottom second harmonic 

From a physical point of view relationship (23) forces the amplitude of the bottom 
second harmonic in such a way that the gravity component along the bed profile at 
second order exactly balances the second-order component of the drag force acting 
on the sediment caused by the steady streaming associated with both @ii) and @i;)). 
Then from (22) and using (23) we find 

From what has previously been said it follows that Cii) is a periodic function of time. 

2.4 O(si) 
The stream function at order sg can be split into two components : one proportional 
to eias and the other to e3ias. The former (A2ACf @$) eiuz) arises from the nonlinearity 
of vorticity equation and the other (A2AC3, @i;)eeiaz) is forced by the presence of a 
bottom perturbation at  order si. Substitution of (9) into (3), (6) and (7) generates 
differential problems at order 6; for the functions @g) and @g). It is easy to verify 
that both problems are similar to that found for @, but for the presence of a forcing 
term. They are solved using the same procedure as described in 82.2. 

Let us finally come to sediment continuity at  O(&. As previously, let us expand 
the amplitude C3,(t)  in power series in Q of the form: 
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Substituting (8), (9) and (25) into the sediment continuity equation and making use 
of the sediment flow rate formula, a t  order ez we find 

+terms proportional to Cg) e ( t ) ,  (26) 

where the constant c is equal to 2.83, the functions h(t), Z(t) are given in Appendix C 
and e( t )  is defined by (19). 

Again in order to  avoid secular terms in the solution of (26), the time average over 
a cycle of the right-hand side of (26) must vanish. The time average of the term 
proportional to  Ci;) is zero for any value of Cg) since the values of the physical 
parameters fall within a neighbourhood of the critical conditions. By imposing that 
the time average over a cycle of the remaining part of (26) should vanish, the 
following ordinary differential equation for A(7)  is obtained : 

where a,, a2, are functions of the relevant physical parameters: 

a = 1 

a2 = -1: ia, l ( t )  dt. 

Equation (27) is of Landau-Stuart type and can be easily integrated in closed form 
to obtain the time development of a small initial bottom perturbation and its 
asymptotic behaviour for large time : 

If the cubic term in (27) is neglected (A+O) ,  one recovers the usual exponential 
behaviour of JAl predicted by the linear theory : the amplitude grows when Fd is larger 
than Fdc (this implies positive values of the real part of a,) and decays when Fd is 
smaller than Fdc (this implies negative values of the real part of a,). Nonlinear terms 
have different effects depending on the values of the parameters. In  order to discuss 
the behaviour of IAJ let us consider first JL larger than Fdc and consequently positive 
values of the real part of a,. If the other parameters are such that the real part of a2 
is negative, nonlinear effects cause the perturbation to reach the equilibrium 
amplitude ]Ae] when 7 tends to infinity: 

(Note that the term 'amplitude' is used both for the amplitude of the ripple and for 
the function A ( T ) .  I ts  meaning will be clear from the context.) The value of IAl tends 
to IA,I with a monotonic growth or decay depending on its initial value. On the other 
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hand, if the values of the parameters are such that the real part of a2 is positive, no 
equilibrium amplitude exists and the perturbation tends to grow indefinitely. 

A different behaviour is present when F, is smaller than Fdc, i.e. for negative values 
of the real part of a,. If the values of the other parameters are such that the real part 
of a2 is also negative, any perturbation tends to decay. On the other hand, if the real 
part of a2 is positive, perturbations characterized by an initial amplitude larger than 
IA,I amplify and tend to grow indefinitely. If the initial amplitude is smaller than 
IAel, perturbations decay. 

The configuration of the bottom under sea waves is thus determined by the values 
of the parameters which affect the time development of IAl. This will be discussed in 
the following section. 

3. Results 
As pointed out in the previous section the smallness of the parameter Q allowed us 

to decouple the study of the oscillatory flow from that concerning the time 
development of the bottom. 

We first discuss the flow field. As already explained in I, the flow field exhibits a 
complex structure but the time development of the bottom is mainly controlled by 
its steady part. The steady streaming consists of recirculating cells ; their number, 
shape and intensity depending on the parameters of the problem. The results 
described in I, which concern the flow over ripples of infinitesimal amplitude, are 
modified by nonlinear effects as explained in detail in Vittori (1989). We recall here 
only the main features of the flow field which are relevant to the discussion of present 
results concerning the bottom time development. When according to linear theory 
the steady streaming is characterized by the presence of four cells, nonlinear effects 
cause the upper pair of cells to squeeze in a gap between the lower cells (see figure 1). 
When only two cells are present nonlinear effects tend to shift the centres of the cells 
towards the troughs of the ripples (see figure 2). These modifications of the flow affect 
bottom elevation. In particular they cause a bottom second harmonic to be present, 
the amplitude of which is such that the component of sediment weight along the bed 
profile at  second order exactly balances the component of the drag force acting on the 
sediment. 

Let us now focus our attention on the development of bedforms. In I a bottom 
perturbation of infinitesimal amplitude has been considered and the conditions for its 
growth or decay have been determined. The analysis described in the previous 
sections allowed us to treat perturbations of small but finite amplitude. Assuming 
that bottom perturbations of finite amplitude are originated only by the time 
development of initially infinitesimal perturbations, for fixed values of R,, the plane 
(R,,F,) can be divided into three regions where the present theory predicts the 
existence of a flat bed, rolling-grain ripples and vortex ripples respectively. These 
three regions are sketched in figure 3 (a).  Indeed for F, less than F,,, (27) states that 
any infinitesimal perturbation tends to decay (flat bed). On the other hand, if F, is 
larger than Fdc, bottom perturbations characterized by wavenumbers falling within 
a restricted range around a, amplify and ripples appear. The initial time development 
of the amplitude of the latter is always described by (29). 

In  the region where Fd is less than Fdv, 1AJ is such that the ratio k between ripple 
height and length is less than 0.1. Thus rolling-grain ripples are the bottom 
configuration predicted by the theory. In this region (29) can be assumed to describe 
the time development of an initially infinitesimal perturbation till it reaches its final 

2 FLW 218 
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FIGURE 1. Steady part of the stream function, (a )  neglecting or ( b )  considering nonlinear effects 
(a  = 0.15, R, = 0.1, C p  = 0, & = 0.3). 
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FIGURE 2. Steady part of the stream function, (a )  neglecting or ( b )  considering nonlinear effects 
(a  = 0.15, R, = 80, C&\) = 0, 6; = 0.3). 

equilibrium configuration. If Fd is larger than Fdv, the value of IA,I is such that k is 
larger than 0.1. In this region (29) describes the time development of an initially 
infinitesimal perturbation only till the flow separates behind the crests. Then the 
present theory cannot follow the further growth of ripples in the ‘vortex regime’. 
Indeed the assumption of weakly nonlinear effects is such that the strong nonlinear 
effects associated with flow separation cannot be handled by the present theory. 
Thus, if Fd is larger than Fdv, it can only be concluded that vortex ripples will 
presumably appear though the time development of their amplitude cannot be 
predicted, So far it has been assumed that a2 is negative for any value of R,, i.e. it 
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4 b 
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Vortex ripples 

Flat bed 
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FIGURE 3. Sketches of the limiting curves dividing the (R8, Fd)-plane into regions where a flat bed, 
rolling-grain ripples and vortex ripples are expected to form (fixed values of s and Rd) .  (a )  u2 < 0 
for any value of R,; ( b )  a2 < 0 for R, < R ,  and a, > 0 for R, > R,; ( c )  u2 > 0 for any value of R,. 

has a different sign with respect to a, when Fa is larger than Fdc. The case of u2 
changing sign for R, equal to R, is sketched in figure 3 (b )  : the real part of a2 (which 
is assumed negative for low values of R,) increases when R, increases and becomes 
positive for R, larger than R,. In this case the curve Fa,(R,) merges with the curve 
Fdc(R,) and for R, larger than R, the region where rolling-grain ripples are the 
bedforms predicted by the theory disappears (see figure 3 b ) .  Indeed for R, larger than 
R, and Fd larger than Fdc, IA,I is imaginary, no equilibrium exists and bottom 
perturbations tend to grow indefinitely. 

Finally, if a2 is positive for any value of R,, no region of the (R,, Fd)-plane exists 
where rolling-grain ripples are a stable bed configuration and the instability of the 
flat bed always leads to a vortex-ripple regime (see figure 3c). 

An example of the results obtained for R, equal 10 is shown in figure 4. For this 
value of R, increasing R,, both FdC and Fdv increase. In the same figure experimental 
points from Blondeaux, Sleath & Vittori (1988) are also shown. The data are the 
same as in figure 10 (a )  of I and consequently the values of R, fall in the range (5,15). 
However, in figure 4 observed ripples are plotted accordingly to their type : rolling- 
grain and vortex ripples. The qualitative agreement seems satisfactory though the 
span of the rolling-grain region is theoretically overestimated. In the region of the 
plane (R,, Fd) where rolling-grain ripples are a stable bed configuration, the present 
analysis allows the prediction of their geometrical configuration. Indeed relationship 
(30) gives the equilibrium amplitude of the ripple, where (23) determines the relative 

2-2 
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3 1  
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Iling-grain ripples 
2 v 

F d  

: *  

Flat bed 
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R, 
FIGUEE 4. Limiting curves dividing the (R6, FJ-plane into regions where a flat bed, rolling-grain 
rippla and vortex ripples are expected to  form (R, = 10, /3 = 0.15, 8 = 2.65). Experimental data 
of Blondeaux et al. (1988) are for 5 < R, < 10 (V, flat bed ; 0, rolling-grain ripples ; , vortex 
ripples). 

Experimental Theoretical 
value of value of 

Exp. no. R, Fd R, h*lS* h * / P  

1 10.4 2.08 57.9 0.90 0.54 
3 11.6 2.28 61 .O 0.72 0.84 
4 13.0 2.57 64.9 0.82 1.14 

12 9.7 1.90 39.6 0.50 0.71 
13 10.4 2.03 41 .O 1.21 1.04 
31 8.4 1.67 26.0 1.05 0.56 
37 11.2 2.19 52.1 0.64 0.97 
38 12.0 2.34 53.9 1.24 1.19 

TABLE 1 .  Experimental data from Blondeaux et al. (1988) for sand (d*  = 0.124 mm) 

amplitude of the second harmonic of the ripples profile with respect to the 
fundamental. 

In table 1 and figure 5 the experimental values of ripple height (h*) are compared 
with those predicted by the present theory. The experiments considered in figure 5 
correspond to those of figure 4 and are characterized by values of R, falling in the 
range (5,15). The agreement seems satisfactory taking into account that the dashed 
lines in figure 5 are such that the points falling between them are characterized by 
a theoretical value which differs from the experimental value by an amount equal to 
50 % of the latter. An example of the predicted ripple profile is shown in figure 6. The 
typical shape with sharper peaks and flatter troughs is clearly recognizable (it is 
worth pointing out that the vertical coordinate has been magnified by a factor 3). A 
quantitative comparison between experimental and theoretical ripple profiles is not 
possible since, to the authors’ knowledge, detailed measurements of rolling-grain 
ripple profiles do not exist. 
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5. Theoretical prediction of ripple height plotted versus experimen..tI values of 
Blondeaux et al. (1988). 
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t' 

FIGURE 6. Predicted equilibrium bottom configuration (Rd = 40, R, = 10, s = 2.65, B = 0.15, 
Fa = 1.90). 

In the above-mentioned region of the plane (R8, Fd), i.e. when rolling-grain ripples 
are present, knowing their geometrical profile and the flow field which is obtained 
from the stream function $, it is possible to compute some important quantities 
which control the interaction between surface waves and the sea bottom. In 
particular the bed shear stress r* and the energy dissipation P*, averaged in time 
and space, which takes place in the bottom boundary layer are given by 

Introducing the dimensionless quantities P = P*/pUt3 ,  r = r*/pU:2 and taking into 
account that the stream function and the bottom profile are expressed in power series 
of d it is easy to see that 

P = ~o+&l+d'2+o(8), 7 = ~ 0 + ~ h 1 + e r 2 + o ( ~ ~ ) .  (3% b) 

For the sake of brevity we do not report the expressions for Po, Pl, P2 and ro, rl, r2.  As 
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FIQURE 7 .  Function Pz plotted versus R, for different values of the ripples wavenumber a. 
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Dissipation factor versus Rd for different values of the ripple 
k = 0.1. 

wavenumber a and 

far as energy dissipation is concerned we only point out that (i) Po is the wave energy 
dissipation per unit time and space for a flat bed ; (ii) PI identically vanishes. This 
result is obvious since the wave energy dissipation cannot depend on the sign of 
ripple amplitude; (iii) the last term P2 depends on a and R,. In  figure 7, P2 is plotted 
versus R, for different values of a. The increase of Pz found for a fixed value of a as 
R, increases is related to the different structure of the steady drift which is present 
in the oscillatory flow over a wavy bed. Indeed, for fixed a, a transition occurs as R, 
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R, 
FIGURE 9. Limiting curves dividing the (R&, Fa)-plane into regions where a flat bed, rolling-grain 
ripples and vortex ripples are expected to form (R,, = 20, /3 = 0.15, 8 = 2.65). Experimental data 
of Blondeaux el uZ. (1988) are for 15 < R, < 25 (V, flat bed; 0, rolling-grain ripples; 0,  vortex 
ripples). 

increases from a regime characterized by steady streaming consisting of four 
recirculating cells to a two-cell regime (Vittori 1989). 

In figure 8 the behaviour of the dissipation factorf,, defined by Jonsson (1963) as 
the ratio between P* and 2~?7:~/37c, is shown as function of R, for different values of 
ripple wavenumber a and assuming a value of the ratio k between ripple height and 
length equal to 0.1. In this figure the dashed line corresponds to a flat bed. For a fixed 
value of the ripple steepness k, the increase of Pz caused by the increase of a is such 
that the term .pZ increases even though E decreases in order to have a fixed value of 
k. Consequently short ripples are characterized by larger values off, than longer but 
similar ripples. For R, less than about 100 these findings are in agreement with results 
by Sleath (1984, p. 203), who computedf, starting from knowledge of the oscillatory 
flow over a rippled bed determined by means of the numerical integration of the 
vorticity equation without any assumption on the value of E and r .  For R, larger than 
about 100, Sleath's results deviate from the present results since for such values of 
the parameters the flow separates and vortex shedding occurs. Similar results are 
obtained for the bed shear stress. 

So far we have described a comparison between the theoretical predictions and 
experimental data when R, is equal to 10. The agreement between theory and 
experiments get worse when larger values of R, are considered. Figure 9 shows the 
theoretical curves dividing the plane (R,, F,) into the three regions (flat bed ; rolling- 
grain ripples; vortex ripples) for R, = 20 along with experimental data from 
Blondeaux et al. (1988) with R, falling in the range (15,25). In this case only a 
qualitative agreement is found. Indeed either theoretical results or experimental 
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FIGURE 10. Limiting curves dividing the (Ra,Fd)-plane into regions where a flat bed, rolling-grain 
ripples and vortex ripples are expected to form (R, = 40, p = 0.15, s = 2.65). Experimental data 
by Horikawa & Watanabe (1968) are for 30 < R, < 50 (V, flat bed; 0, rolling-grain ripples; 
e, vortex ripples). 

data show that an increase of R, implies a decrease of Fdv and consequently a decrease 
of the area where rolling-grain ripples are a stable bed configuration. Similar results 
are obtained when comparing the theory with data by Horikawa & Watanabe (1968) 
which are characterized by an average value ofR, equal to 40 (see figure 10). The lack 
of a quantitative agreement can be explained by considering that when R, is less than 
R,, d * is larger than 6*, and in this situation the theory can provide only qualitative 
information. In  order to obtain quantitative information for R, less than R,, it would 
be necessary to extend the theory taking into account the large momentum transfer 
due to the vorticity shed by sand grains. 

There are other experimental data on rolling-grain ripples which have not been 
considered herein. Indeed all of them are characterized by values of the Stokes 
Reynolds number R, larger than the critical value for laminar-turbulent transition 
of about 100 (Merkly & Thomann 1975 ; Tromans 1976 ; Hino, Sawamoto & Takasa 
1976; Blondeaux & Seminara 1979; Blondeaux 1987). In  this situation the different 
structure of the basic flow is likely to significantly affect the development of 
bedforms. 

In describing what happens in the plane (R,, F,) it has been assumed that the initial 
perturbation has an infinitesimal amplitude. When considering initial perturbations 
of finite amplitude, the results described so far are slightly modified. Indeed, 
depending on the values of the parameters, a portion of the region where the theory 
predicts a flat bed might exist where finite but small-amplitude perturbations grow 
and lead to the appearance of vortex ripples. This happens only when a2 is positive, 
i.e. in the situation sketched in figure 3 ( b )  for R, larger than R, or for any value of 
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R, 
FIQURE 11. Limiting curves dividing the (R,,F,)-plane into regions where a flat bed, rolling-grain 
ripples and vortex ripples are expected to form. (a) R, = 10; ( b )  R, = 20; (c) R, = 40 (/I = 0.16, 
s = 2.65). 

R, in the situation sketched in figure 3 (c) .  Indeed in the dashed region, a vortex ripple 
might appear if the initial perturbation has an amplitude larger than 2 ( 4 ,  -Fa)a ]A,]. 

We conclude that rolling-grain ripples are an equilibrium configuration only 
within a restricted region of the plane (R,, Fd), provided that the initial amplitude of 
the bottom perturbation is small. Outside the latter region the plane bottom is either 
stable or rolling-grain ripples appear aa a transient bedform which eventually leads 
to vortex ripple. This is summarized in figure 11. 

4. Discussion 
In  I and in the present paper the time development of a small perturbation of a 

cohesionless bottom subject to  the action of a gravity wave has been studied in the 
linear and nonlinear regimes. 

We now focus our attention on the assumptions made and consequently on the 
limitations of the present theory. First, a viscous flow has been assumed, whence the 
analysis is restricted to  sufficiently low values of R,. The linear stability analysis of 
Blondeaux & Seminara (1979) suggests that for flow to remain laminar R, must not 
exceed a value of about 100. However, the latter authors adopted a momentary 
criterion of instability and the predicted instability is limited to a small part of the 
cycle. The recent work by Blondeaux & Colombini (1988), where the time 
development of two-dimensional disturbances of a flat Stokes layer have been 
studied by means of a direct simulation technique, seems to indicate that 
perturbations of laminar flow are present for values of the Reynolds number in the 
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Blondeaux et al. Sleath 

Sand : Sand : Sand : Nylon pellets : Sand : 
d * = 0.4 mm d*=0.2mm d *  = 0.124 mm d *  = 0.42 mm d* = 0.4 mm 

Exp. no. 

8 
9 

10 
15 
30 
31 
32 
33 
35 
36 
45 
46 

h*/2S: 

0.51 
0.46 
0.52 
0.53 
0.35 
0.34 
0.36 
0.41 
0.44 
0.48 
0.46 
0.44 

Exp. no. 

13 
14 
20 
26 
27 
28 
29 
35 
36 
42 
44 

h*/26: Exp. no. 

0.20 1 
0.21 3 
0.33 4 
0.15 12 
0.20 13 
0.23 21 
0.29 22 
0.68 31 
0.20 32 
0.34 38 
0.28 42 

44 
46 
48 

h*/2S? 

0.17 
0.18 
0.22 
0.19 
0.19 
0.15 
0.18 
0.18 
0.23 
0.19 
0.25 
0.22 
0.18 
0.14 

Exp. no. 

2 
7 

11 
12 
16 
17 
25 
29 
39 
49 
50 

h*/26: 

0.31 
0.25 
0.29 
0.30 
0.32 
0.39 
0.35 
0.27 
0.30 
0.29 
0.26 

h*/2S: 

0.58 
0.50 
0.48 
0.45 
0.83 
0.80 
0.59 
0.48 
0.78 
0.92 
1.11 
1.02 
0.68 
0.69 
0.61 
1.34 
1.07 
0.88 
0.68 
0.59 
0.62 

TABLE 2. Experimental data on the ratio between ripple amplitude and the thickness of the 
viscous boundary layer, from Blondeaux et al. (1988) and Sleath (1976) 

range predicted by Blondeaux & Seminara (1979), but their energy remains very low 
till larger values of R, are reached. Experimental data seem to support this 
conclusion. It can be concluded that the present results can be used with confidence 
up to values of R, around 100, and the theory could also work for larger values of R,. 

A second limitation derives from the assumption of a smooth wavy bottom. The 
size of sediment grains should then be much less than the thickness of the viscous 
boundary layer 8:. For practical purposes the actual value 6: of the boundary-layer 
thickness can be assumed larger than 6* and equal to 6.5vi/w* as suggested by 
Manohar (1955). Comparing the diameter of sand (which ranges between 0.062 mm 
and 2 mm) with the value of 6: computed using the angular frequency characteristic 
of sea waves (w* can be assumed to be about 0.6 s-') one can argue that the above 
assumption is verified under field conditions. 

In the present contribution it has also been assumed that nonlinear terms are 
smaller than other terms in the vorticity equation. This assumption formally implies 
that the ripple amplitude $h* must be smaller than the thickness of the viscous 
boundary layer 6*, i.e. the theory holds for values of c: much smaller than one (strictly 
infinitesimal). However, for practical purposes it could be assumed that the theory 
provides reasonable results provided that $h* is smaller than 8;. It is easy to verify 
that the latter quantity is larger than the amplitude of a ripple a t  incipient 
separation. I n  table 2 the values of the ratio h*/26,* are shown for the experiments 
performed by Blondeaux et al. (1988) and Sleath (1976) with medium sand 
(experimental data by Sleath 1976 referring to nylon pellets and coarse sand are not 
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shown since for these data d* is not smaller than the boundary-layer thickness). It 
can be seen that, except from a few cases, the amplitude of rolling-grain ripples which 
are about to separate (h* = O.iZ*) is always smaller than the thickness of the 
boundary layer. 

Finally it must be pointed out that criticism could arise about the sediment flow 
rate formula proposed in I. It is worth stressing that the critical wavelength a,, the 
critical Froude number Fdc and the equilibrium amplitude are all not affected by the 
value attained by the parameter Q but rather by the functional dependence of q on 
V and a?;l/az. Comparison of relationship (9) of I with experimental data by Sleath 
(1978) indicates that the time dependence of q is well predicted even though a 
discrepancy in the amount of sediment moved by the flow has been detected. 

This work has been supported by the Italian Ministry of Education under grant 
MPI (60 YO) and is part of G. V.'s Ph.D thesis to be submitted in partial fulfilment of 
her degree. 

Appendix A. @20, @$\) and @it) 
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Appendix B. The functions f ( t )  and g ( t )  of (22) 
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